Adaptive discontinuous Galerkin methods on surfaces
نویسندگان
چکیده
منابع مشابه
Adaptive spacetime meshing for discontinuous Galerkin methods
Spacetime-discontinuous Galerkin (SDG) finite element methods are used to solve hyperbolic spacetime partial differential equations (PDEs) to accurately model wave propagation phenomena arising in important applications in science and engineering. Tent Pitcher is a specialized algorithm, invented by Üngör and Sheffer [2000], and extended by Erickson et al. [2005], to construct an unstructured s...
متن کاملAdaptive Discontinuous Galerkin Methods with Multiwavelets Bases
We demonstrate the advantages of using multi-reolution analysis with multiwavelet basis with the Discontinuous Galerkin (DG) method. This provides significant enhancements to the standard DG methods. To illustrate the important gains of using the Multiwavelet DG method we apply it to conservation and convection diffusion problems in multiple dimensions. The significant benefits of merging DG me...
متن کاملOn Discontinuous Galerkin Multiscale Methods
In this thesis a new multiscale method, the discontinuous Galerkin multiscale method, is proposed. The method uses localized fine scale computations to correct a global coarse scale equation and thereby takes the fine scale features into account. We show a priori error bounds for convection dominated convection-diffusion-reaction problems with variable coefficients. We present an posteriori err...
متن کاملDiscontinuous Galerkin methods
This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience.We present the discontinuous Galerkin methods and describe and discuss their main features. Since the methods use completely discontinuous approximations, they produce mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another co...
متن کاملAnisotropic adaptive simulation of transient flows using discontinuous Galerkin methods
An anisotropic adaptive analysis procedure based on a discontinuous Galerkin finite element discretization and local mesh modification of simplex elements is presented. The procedure is applied to transient 2and 3dimensional problems governed by Euler’s equation. A smoothness indicator is used to isolate jump features where an aligned mesh metric field in specified. The mesh metric field in smo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2015
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-015-0719-4